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We discuss the problem of eliminating the momentum variable in the phase 
space Langevin equations for a system of Brownian particles in two related 
situations: (i) position-dependent damping and (ii) existence of hydrodynamic 
interactions. We discuss the problems associated with the conventional elimina- 
tion and we develop an alternative elimination procedure, in the Lagevin 
framework, which leads to the correct Smoluchowski equation. We give a 
heuristic argument on the basis of stochastic differential equations for the 
Smoluchowski limit and establish rigorously the limit for the general case of 
position-dependent friction and diffusion coefficents. 
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1. I N T R O D U C T I O N  

The  e l imina t ion  of slow or  i r re levant  var iables  is a usual  p rocedu re  to dea l  
with mac roscop i c  systems. Such a con t rac t ion  of the descr ip t ion  is a centra l  
idea  of s ta t is t ical  mechanics .  F r o m  a mic roscop ic  po in t  of view several  
schemes  (most ly  based  on p ro jec to r  formal i sms)  have  been  deve loped  to 
der ive  equat ions  descr ib ing  a mac roscop ic  behav io r  f rom the de ta i led  
mechan ics  of the ind iv idua l  componen t s  of the system. F r o m  a more  
p h e n o m e n o l o g i c a l  po in t  of view one  of ten faces a set of  equa t ions  for  a few 
var iables  which evolve in wel l -d i f ferent ia ted  t ime scales. The  ad i aba t i c  
e l imina t ion  r of the fast  var iables  leads  to a s impler  d e s c r i p t i o n  of  the 
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system valid on the slowest time scale. One of the simplest examples of this 
elimination of variables is the passage from a phase space description of a 
Brownian particle to a description in terms of its position (2) only. 

A usual phenomenological description of a great variety of systems 
features a set of nonlinear coupled Langevin equations with Gaussian white 
noise random forces. The "conventional" adiabatic elimination consists in 
setting the time derivative of the fast variables equal to zero. In this way 
these variables are assumed to follow instantaneously the slow variables 
acquiring a constrained stationary value. This conventional adiabatic elimi- 
nation is believed to represent in some sense a zeroth-order approximation. 
Corrections to this approximation take into account the finite relaxation 
time of the fast variables. An alternative approach to this procedure is the 
elimination of variables from the Fokker-Planck equation equivalent to the 
starting set of Langevin equations. In a previous paper (2) two of the 
authors discussed the elimination of the momentum in the Langevin 
equations describing noninteracting Brownian particles. The major diffi- 
culty there was to deal with the non-Markovian Langevin equation ob- 
tained after the elimination of the velocity. A second difficulty that can 
arise in eliminating variables in Langevin equations is the appearance of 
terms which are nonlinear in the random forces. This problem can be 
handled with the approximation developed in a different context in Ref. 3. 

In the case of Brownian particles without hydrodynamic interactions r 
the conventional adiabatic elimination leads to the correct zeroth-order 
approximation which is known as the Smoluchowski approximation. This 
procedure might lead to ambiguities when the random force driving the 
system is not independent of the variables of the system (multiplicative 
noise). This occurs for Brownian particles with hydrodynamic interactions, 
where the random force is position dependent. These ambiguities in the 
conventional adiabatic elimination, without explicit reference to this partic- 
ular system, have already been recognized. (4-7~ The difficulty has been 
traced back (4-6) to the nonunique interpretation of the Langevin equation 
in position space which results after elimination of the momentum. In 
Sections 2 and 3 of this paper we rederive the correct zeroth-order approxi- 
mation (Smoluchowski limit) in th problem of eliminating the momenta in 
the Langevin equations for a system of Brownian particles with hydrody- 
namic interactions. We do not make any reference to the It6 or Stratono- 
vich interpretation (8'9'2~ of the Langevln equations involved: we use the 
Langevin equations and ordinary calculus and switch before going to the 
limit of infinite friction coefficient to the equation for the probability 
density of the positions. In the limit we thus end up with the Fokker- 
Planck equation for the problem, which of course uniquely defines the 
position process. In this section we follow the main ideas of Ref. 2. For 
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clarity of presentation we discuss first in Section 2 the simpler problem of a 
one-dimensional Brownian particle with position-dependent damping. In 
higher dimensions one may proceed similarly and in Section 3 we quote the 
result for Brownian particles with hydrodynamic interactions. The first two 
sections do not establish in a rigorous way the Srnoluchowski limit of the 
problem. They rather represent a "physical" approach to the correct limit 
equation. This is done in Sections 4 and 5, which are more mathematical in 
nature. There, the Smoluchowski limit is obtained by using stochastic 
differential equations. We first give a mathematically heuristic argument 
for the limit equation obtained in Section 2, using the Stratonovich and It6 
definitions of the stochastic integrals. We then establish the convergence of 
the position process to the limiting process in a specified sense. 

From a microscopic point of view the problem of the Smoluchowski 
approximation in this context was discussed by Murphy and Aguirre (m) 
and from a phenomenological Fokker-Planck point of view by Wi- 
lemski (l~ and Titulaer. (12) Related work from the Fokker-Planck perspec- 
tive is due to Ryter, (4} Risken et al., (3~ Kaneko, (~4) and Gavish. (~5~ From 
the Langevin perspective that we follow in Section 2 the work of Hess and 
Klein (]6~ is similar in spirit but different in form from ours, while Hesegawa 
et al. (5~ discuss the general problem of elimination of variables along the 
lines of Section 4. The examples considered in Ref. 17 do not include the 
case of adiabatic elimination from Langevin equations with multiplicative 
noise. 

2. P O S I T I O N - D E P E N D E N T  FRICTION 

In this section we consider an independent one-dimensional Brownian 
particle moving in a potential ~(q) and in a nonhomogeneous medium such 
that the friction coefficient )~(q) is position dependent. (4'5'6'13~ The equations 
of motion for the momentum p and position q of the Brownian particle are 

4 ( 0  = p( t )  (2.1) 
[~(t) = - ~ ( q ( t ) ) p ( t )  - e / (q( t ) )  + g(q( t ) )~( t )  (2.2) 

where ~,' means the derivative of 4' with respect to q and the random force 
~(t) is assumed to be Gaussian white noise with zero mean and correlation 

(~(t)~(t '))  = 2d(t - t') (2.3) 

The fluctuation dissipation theorem relates g(q) and ;k(q) by 

gZ( q) = Ks T)~( q) (2.4) 

where K s is the Boltzmann constant and the temperature T may also 
depend on q. This relation is obtained imposing that the Fokker-Planck 



294 Sancho, San Miguel, and Otirr 

equation in phase space, equivalent to (2.1)-(2.2), has the correct equilib- 
rium solution. In what follows we do not require (2.4) to hold. The 
momentum p can be considered a fast variable under the assumption of a 
large damping coefficient X(q). Dr(q) >/X 0 and Xo is a large number.] The 
elimination of p should then give rise to an equation for the probability 
density P(q, t) in position space. The exact equation satisfied by P(q, t) is 
difficult to obtain even in much simpler situations. (2) Therefore what one 
aims at in general is to obtain the leading terms of such an equation in an 
expansion in powers of ~- l (q) .  The conventional adiabatic elimination 
which in general is assumed to give the correct zeroth-order approximation 
consists in setting p = 0 in (2.2) and substituting in (2.1). This results in a 
stochastic equation in position space with position-dependent random term 
("multiplicative noise"). It is therefore necessary to give an interpretation of 
that equation. In doing so one might run into problems if one considers a 
case in which (2.4) holds. The equation considered as Stratonovich as well 
as It6 (8'9) does not give the correct answer, as might be seen from its 
stationary solutions, which are not correct equilibrium distribution Pcq 
= Nexp[-eo(q)/kBT ]. How the limit has to be looked at is the subject of 
Section 4. 

To eliminate p we shall then follow the method we introduced in the 
case of constant damping. (2) The first step is the formal integration of (2.2) 
obtaining 

g t ( t ) = p ( t ) = -  f0'exp f - f ' ) t (q(t ' ))art '  ]~(q(s) )ds  

+ foteXp[-~tX(q(t '))dt ']g(q(s)),(s)ds (2.5) 

where we have neglected transient terms involving the initial momentum. 
The two terms on the right-hand side of (2.5) are, respectively, of order X - l 
and X -~/2, as can be seen from (2.3) and because the time integral of 
exp - ft  X(q(t')) dt' is of order X- 1. To simplify the memory kernels in (2.5) 
we expand X(q(t')) as 

dX(q(t)) 
X(q(t')) = X(q(t)) dq(t) (q(t) - q(t')) + . . .  (2.6) 

where q(t) - q(t') is expressed from (2.5) as 

q(t) - q(t')= - ~tt ,t ds' fOsexp[- f s'x(q(t"))dt" ]e/(q(s))ds 
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The two terms on the right-hand side of (2.7) are, respectively, of order ~t-2 
and ~-3/z. Substituting (2.7) in (2.6) we have 

dX(q(O) , 
X(q(r)) = X(q(t)) dq(t) f,, d~' 

• fo~'exp[ - fs~'X(q(t"))dt"lg(q(s))~(s)ds+ O(X-') 

= X(q(t))  + O ( X - , / 2 )  (2.8) 
so that 

exp[-f'~(q(t'))dt'J=exp[-~(q(t))(t-s)] . [ l  + O(~,- ' /2)]  (2.9) 

The result in (2.8) coincides with one in Ref. 7 and characterizes the effect 
of a position-dependent friction. In our case a more important effect comes 
from the existence of multiplicative noise. This effect of g(q) is analyzed 
expanding g(q(s)) as we did above with ~(q(t')). We obtain 

dg(q(t)) .g(q(t))~' dt' g(q(s)) = g(q(t)) - dq(t) 

• foot'exp[-X(q(t))(t'- s')]~(s')ds'+ 0(~-3/2) (2.10) 

and similarly 

, ' (q(~))  = , ' (q( t ) )  + o ( x  -3/2) 

Substituting (2.9), (2.10), and (2.11) in (2.5) we have 

o ' ( q ( 0 )  
q ( t )  --- X(q(t)) +g(q(t))fote-X(q(~ 

dg(q(0) 
dq(O " g( q( O ) fo'e-~q~'~ ~'-"~ 4( r) dt' 

(2.11) 

• f,' dSfo~e-~'q""s-s'~(~')d~'+ O(X-3/2) (2.12) 
This is our basic stochastic equation in position space from which we shall 
derive the equation for the probability density P(q, t). There are two origins 
of complexity in this stochatic equation. The first is the appearance of 
nonwhite random forces due to the time integrals on the right-hand side of 
(2.12). This is fundamentally the same problem that appears for constant 
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friction (2) (see also Ref. 7). The second is the nonlinear form in which the 
random force ~(s) appears in the third term of the right-hand side of (2.12). 
The presence of this third term is due to the multiplicative character of the 
noise [g(q) nonconstant]. 

The second term on the right-hand side of (2.12) can be interpreted in 
terms of a nonwhite or colored random force 

~(t) = j0(te-X(q(t))(t-s)~ ( s ) ds (2.13) 

which in leading order in 3`-l can be approximated (2) by a Gaussian white 
noise 

~(t) + 0(3, -2) (2.14) ~(t)_ X(q(t)) 

The last term in (2.12) is more complicated and a way to handle it is 
through the stochastic Liouville equation (18) for the density o(q,t) of an 
ensemble of representative points obeying (2.12). Taking the average over 
the stochastic force ~(t) we obtain a formal master equation for the 
probability density of the process P(q, t) = (o(q, t)) 

~e(q,t) ~ #(q) 0 g(q) 
0t - 0q 3`(q) P(q,t) Oq 3`(q) (~(t)o(q,t)) 

dg(q) " g(q) t'te-X(q)(t-r)Jo + a q ~ -  dt' 

• (2.15) 

The statistical averages in (2.15) can be performed using the functional 
characterization of Gaussian forces due to Novikov(~9/: with ~(t) being a 
white noise we have (E) 

0 g(q) (~(t)o(q,t)) = Oq h(q) P(q,t) + O(X -2) (2.16) 

and generalizing Novikov's theorem to deal with a nonlinear term in ~(t)(3) : 

( ' 2 o ( q ' t )  ) 
(~(t')~(s')o(q,t) ) = 2 ~ ( r  - s ')e(q,t)  + 8~(s~) 8~(t') ( 2 . 1 7 )  

The last term in (2.17) will contribute in higher orders in 3`-1 when it is 
substituted in (2.15). Neglecting this term and substituting in (2 .15)we 
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arrive at the following Fokker-Planck equation: 

OP(q,t) ~ q,'(q) ~ g(q) ~ g(q) 
at - aq X(q) P(q,t)+ aq ~(q) aq X(q) P(q,t) 

] dg(q) 
+ Oq ~(q)2 ~ g(q)P(q,t) (2.18) 

which can be written in the case of (2.4) as 

OP(q,t) 
_ 2 I [q,(q)+kaT_~qlp(q,t  ) (2.19) 

at Oq ;k(q) 

This equation represents the Smoluchowski approximation to the problem 3 
and has the correct equilibrium distribution Peq(q)= Ne -~'(q)/kSr Of 
course the usefulness of this equation is not to obtain the equilibrium 
distribution but to obtain, for instance, a stationary distribution under 
given nonequilibrium conditions. 

From equation (2.18) we can write an equivalent stochastic equation 
which in the ordinary Stratonovich interpretation is 

e~'(q) 1 g'(q)g(q)+ g(q)*'t" 
r = ~(q) A(q) 2 ~(q) ~( ) (2.20) 

This equation differs from the one obtained in the conventional adiabatic 
elimination in the presence of the second term on the right-hand side. This 
term represents the effect of the multiplicative character of the noise in the 
elimination procedure and it is just the average of the third term on the 
right-hand side of (2.12). This fact justifies a posteriori the substitution (in 
leading order) of such an awkward term in (2.12) by its mean value. (16) 

. SMOLUCHOWSKI EQUATION FOR BROWNIAN PARTICLES 
WITH HYDRODYNAMIC INTERACTIONS 

The equations of motion are in this case 

4i(t) = e;( t)  

pi(t) = - ) k i j ( l q i  - ~bl)/~(t) - q~;(q) + gij(q)~(t) 
where 

(3.1) 

(3.2) 

~i(q) = ~ ~'(q . . . . .  qN) (3.3) 

3 Starting from the Fokker-Planek equation in phase space, the first correction to (2.19) has 
been obtained by Risken et al. (13) using the matrix continued fraction expansion. 
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and the indexes i , j  refer both to different particles and different vector 
components of the momentum and position. The quantity ?~q(lqi- qjI) is 
the generalized friction tensor which represents the hydrodynamic interac- 
tion between two particles. The elements of X 0 corresponding to the same 
particle are self-friction constant coefficients. 

The random forces are Gaussian white noise with zero mean and 
correlation 

@,(t)~j(t')) = 26q6(t - t') (3.4) 

and the fluctuation dissipation relation is 

gikgjk = kB rail (3.5) 

where in (3.5) and in the following we do not make explicit the dependence 
on the position variables. 

The Smoluchowski approximation for this problem can be obtained 
following step by step the procedure of the previous section. We only quote 
here the results. The stochastic equation analogous to (2.10) in the average 
of the equation corresponding to (2.12) and it is 

(b(t) = _ Xi; lep~ ages - 3q k "gmjhi~*~-m* + ~,i~tgq~j(t) (3.6) 

From this equation the Fokker-Planck equation corresponding to the 
Smoluchowski approximation becomes 4 

OP(q,t) _ a ~kiel(~e_[. k s T  o_~ e )P(q, t )  (3.7) 
at aqi 

. A HEURISTIC ARGUMENT 

Let us write the equations (2.1) and (2.2) as stochastic differential 
equations in the form (2~ 

dq(t) = p ( t ) d t  (4.1) 

dp(t) =/3k(q( t ) )d t  - / 3 7 ( q ( t ) ) p ( t ) d t  + f ld (q( t ) )dW t (4.2) 

/3 > 0, Y(q) > 3' > 0, and 6(q) > 0. 
Here W t is the Wiener process with variance E ( W  2) = t and E( ) 

denotes the expectation. Note that/3K = -q,';/33, = ?~ and because of (2.3) 

4 The first correction to this equation for a particular case has been obtained by Titulaer ~ 12) 
starting from the Fokker-Planck equation in phase space. 
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f18 = v/2g. By adiabatic elimination (dp(t)/fl = 0 for f l ~  oo) we obtain 

~(q( t ) )  Iqq( t ) )  dt + ~ aw,  dq( t ) -  y(q(t)) v(q(t)) 

Since the new diffusion coefficient 6/~, is position dependent one has to 
specify the meaning of the stochastic differential d W  t. The appropriate 
interpretation follows from a simple heuristic argument. 

Inserting (4.1) in (4.2) we obtain 

de(t) 
fl - K(q ( t ) )d t -  3,(q(t))dq(t) + 8(q(t))dW t (4.3) 

We write (4.3) as an integral equation 

fo' dp(s_____~) = footK(q(s))ds - foty(q(s))dq(s)+ foot3(q(s))dWs (4.4) fl 

Without making precise the sense of convergence, we can see that as fl ~ oo 
and q( t )~  ~(t) the following will occur: 

(i) The integral ffoK(q(s))ds will converge to the time integral 
f'oK(q(~))ds. 

(ii) The integral HoT(q(s))dq(s) will converge to a Stratonovich sto- 
chastic integral 

fo'v(q(~)) o aq(~) 

by the theorem of Wong and Zakai, (2~ which roughly says that 
the stochastic integral as a limit of Stieltjes integrals is a Stratono- 
vich integral. 

(iii) The integral ffo3(q(s))dWs will converge to the It8 integral 

f0t6(q (s)) dW~ (4.5) 

for the following reason. For finite fl we have that 

which should then also hold true for the limit, i.e., (4.5) will be an 
It6 integral. 

Thus we obtain from (4.4) 

o = I,:(q(~))as - ~ ( q ( ~ ) )  o aq(~) + 8 ( q ( s ) ) a w ~  
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and transforming the Stratonovich differential into an It6 differential (2~ 

0 = K(O(s))  ds - ),(O(s)) dO(s ) - �89 2 + 8(O (s)) dW, 

where 

Solving for dO(s ) we obtain 

/((O(s)) 
dO(s)- y(O(s)) 

and find 

d v'(x)=2yv(x) 

1 2 [dq(s)]2+ 7(O(s)) 

82(0(s)) 

so that finally 

dO(s ) = K(q ( s ) )  ds 1 Y'(q(s))  82(O(s))ds + 8(q(s)_.___)) d W  s (4.6) 
~,(O(s)) 2 V3(O(s)) V(O(s)) 

The limit process 0(t) satisfying (4.6) is the one derived in Section 2. Indeed 
converting (2.20) into an It6 equation and doing the proper identification 
gives (4.6). 

We see that the adiabatic elimination on the level of Langevin equa- 
tions works also for the case where the drift and diffusion coefficients are 
position dependent provided some care with stochastic differential is exer- 
cised. 

At the heuristic level of this section it is interesting to note that the 
difficulties encountered in (2.12) because of the appearance of a nonlinear 
function of a white noise have been here bypassed through the appearance 
of [d0(s)] 2 in an It6 equation. 

We do not know of any rigorous proof for (4.6) to be the limit 
stochastic differential equation of the limit of q(t) as fl---> oo. Nelson (21) 
proves that in case for y = const and 8 = const the process q(t) converges 
almost certainly to 0(t), where in view of (4.6) 

dO(t ) - K(O(t)------~)) dt + 8_ dW, 
Y Y 

In the next section we extend his proof but we only show convergence 
in the L 2 sense. Therefore our theorem is only a weak extension of Nelson's 
theorem. 
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5. A C O N V E R G E N C E  THEOREM 

Let ~(z) > a > 0 be such that 

= r(x)  = foX~ (z) d~ (5. l) Y 

is invertible and let F - l (y ) ,  K ( y ) =  K o F- l (y ) ,  g(y)=  8 o F - I ( y )  be 
globally Lipshitz with Lipshitz constants A,B,  C, i.e., 

IF-*(y) - V - ~ ( / ) l  < Aly  - / I  (5.2) 

IK(Y) - K(Y')[ < BlY -Y ' I  (5.3) 

Ig(y) - g(y')l < Cly -y'l (5.4) 

Let q(t) be the solution of 

dq(t) =p( t )a t ,  q(O) = qo (5.5) 

dp(t) = 3K(q( t ) )dt  - 3y(q( t ) )p( t )dt  - 38(q( t ) )dW t 
(5.6) 

p(o) =po 

and ~(t) the solution of the (It6) stochastic differential equation (4.6) with 
4 ( 0 )  = q(O)  = qo. 

Then for t ~ [0, oo) 

lira E((q(t)  - O(t)) 2) = 0 (5.7) 

Proof. Let y(t)  = F(q(t)), then with (5.5) 

dy(t) = u y(0) = r(q0) 

and combining this with (5.6) we obtain 

dp(t) + K(y ( t ) ) d t  + 8(y( t ) )dW, ,  y(0) = r(q0) (5.8) dy(t) = 

For n E N we define the time interval A n = [tn, in+ l] of length IAn] such that 

16IAnI2B2 + 16]AnlC 2=  1/2 (5.9) 

For t E A n we obtain from (5.8) 

(5.1o) 
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Since (5.6) is linear in the velocity, p(t) can be found very easily as a 
function of q(t): 

-~ (p(t) - p(t~)) = ftfexp[ - fl fsty(q(u))du](K (y(s))ds + ~(y(s))dW~ ) 

An easy computation using (4.6) shows that)~(t) = I'(O(t)) is given by 

~ ( t ) -  ~(t,)= fttfK(fi(s))ds+ ~ 6 ( y ( s ) ) d W  , (5.12) 

By virtue of (5.2) 

lirn E([q(t) - ~(t)l 2) = lim E(IF-'(y(t))  - F-~(y(t))) 

<<. A z lirn E(ly(t  ) - ~(t)l 2) 

and thus (5.7) follows, if we show that for t E [0, ~ )  

lim E(]y(t) - )~(t)l 2) = 0 (5.13) 

To show (5.13) we take the difference of (5.10) and (5.12) and inserting 
(5.11) we obtain, after standard adding and subtracting procedure: 

I.~(t) - y(t)[  < I ~(t.) - y(t.)[ + ft~lK'O~(s)) - K'(y(s))[ ds 

+ f ' e x p r - ~ f ' ~ . ) ) ~ . ] l ~ ) ) -  x ~ ) ) l  ~s 
- -  - J s  n 

+ 2 ? ( -  ~2"~u))~] E '~  ~))- '~'))1 ~"~s 
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Next we use the fact that for It6 integrals for nonanticipating functions 
g(s): 

and taking the expectation of the square we get 

e ( i y ( O  - y( t ) t2)  

< 8E(lY(t.)-y(t.)12)+ s(;-  (y(s))p)ds 

+ 8f, fE(Ig(~(,)) - ~(y(s))i2)ds+ 8(t -  t.) 

For this we have used two inequalities: 

(i) a, ~< N • a/2 
i=1 i=1 

2 t 2 
(ii) Schwartz inequality: ( r  < ( t -  t~)r h (s)ds 

\ J t  n ,~t n 

We now employ (5.3), (5.4), and ~,/> a > 0 and introduce 

~(t) = E(li(t ) -y(t)l 2) 
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to obtain 

rp(t) < 8~( t . )  + 16(t - t.)2B 2 sup qo(t) + 16(t - t . )C 2 sup ~o(t) 
t ~ A  n t E A  n 

+ 8(t - t, )jt,fte-Z~"(t-')E (K2(~(s) )) ds 

8 t e - 2 B a ( t - S ) E  ~ 2  ^ S d s +  

This is true for all t ~ A n, hence we can replace the left-hand side by 
suPt~a, qo(t ) and in view of (5.9) we end up with 

sup qo( t )<  16qo(t . )+ 16tA,,If, te-2aaO-S~E(K2(~(s)))ds 
t ~ A n tn 

+ 16ft.te-2fla(t-S)E(( g ~ ()))ds+s 2 -~2E(p(tn) 2) (5.14) 

It is easy to see that the integrals on the r ight-hand side of (5.14) go to zero 
a s / 3 ~  ~ if E(K'2()(s))) and E(g2()(s)))  are continuous functions of s. 
But E(p(t,) z) < 2E(lp(t,) -p01% + 2p02- Use (5.11) for  t = t, and t, = 0 to 
obtain 1/fl(p(t,) -Po) and proceed analogously as above to get with some 
constant  D 

lira 32 a ~  - ~  E(Ip(t") - P~ < D a-*~lim O<t<tnSUp (~(t) 

We are left with 

lim sup~o(t) < 16 lim rp(t,) + D lim sup ~ ( t )  
.8--->00 t ~ A ,  .8--*o~ fl ~ 0 < t < t ,  

At t o = 0, .~(0) = F(~(0)) = F(q(0)) = y(0)  = Y0, i.e., 

r( t0)  = E(I ~(0 ) - y(0)l z) = 0 

and so 

lim sup w(t)  = 0 

where ~o = [0, tl], t I > 0. Equat ion (5.13) follows now by induct ion over n. 
[] 

Remark. The  weak convergence of the Smoluchowski  limit follows 
as a special case f rom general theorems established in Ref. 22 as pointed  
out  by  H. Spohn to one of the authors  (D.D.). 
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